172 research outputs found

    Geometrical Model for Non-Zero theta_13

    Full text link
    Based on Friedberg and Lee's geometric picture by which the tribimaximal Pontecorvo-Maki-Nakawaga-Sakata leptonic mixing matrix is constructed, namely, corresponding mixing angles correspond to the geometric angles among the sides of a cube. We suggest that the three realistic mixing angles, which slightly deviate from the values determined for the cube, are due to a viable deformation from the perfectly cubic shape. Taking the best-fitted results of θ12\theta_{12} and θ23\theta_{23} as inputs, we determine the central value of sin22θ13\sin^22\theta_{13} should be 0.0238, with a relatively large error tolerance; this value lies in the range of measurement precision of the Daya Bay experiment and is consistent with recent results from the T2K Collaboration.Comment: 14 pages, 7 figures. Published version in Phys. Rev.

    Dynamical Decoupling of Qubits in Spin Bath under Periodic Quantum Control

    Full text link
    We investigate the feasibility for the preservation of coherence and entanglement of one and two spin qubits coupled to an interacting quantum spin-1/2 chain within the dynamical decoupling (DD) scheme. The performance is examined by counting number of computing pulses that can be applied periodically with period of TT before qubits become decoherent, while identical decoupling pulse sequence is applied within each cycle. By considering pulses with mixed directions and finite width controlled by magnetic fields, it is shown that pulse-width accumulation degrades the performance of sequences with larger number of pulses and feasible magnetic fields in practice restrict the consideration to sequences with number of decoupling pulses being less than 10 within each cycle. Furthermore, within each cycle TT, exact nontrivial pulse sequences are found for the first time to suppress the qubit-bath coupling to O(TN+1)O(T^{N+1}) progressively with minimum number of pulses being 4,7,124,7,12 for N=1,2,3N=1,2,3. These sequences, when applied to all qubits, are shown to preserve both the entanglement and coherence. Based on time-dependent density matrix renormalization, our numerical results show that for modest magnetic fields (10-40 Tesla) available in laboratories, the overall performance is optimized when number of pulses in each cycle is 4 or 7 with pulse directions be alternating between x and z. Our results provide useful guides for the preservation of coherence and entanglement of spin qubits in solid state.Comment: 11 pages, 9 figure

    Tunable Dirac Fermion Dynamics in Topological Insulators

    Full text link
    Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving Dirac fermions that behave as massless relativistic particles. These Dirac fermions are responsible for achieving a number of novel and exotic quantum phenomena in the topological insulators and for their potential applications in spintronics and quantum computations. It is thus essential to understand the electron dynamics of the Dirac fermions, i.e., how they interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling in these topological insulators and found that the electron-disorder interaction is the dominant factor in the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding the electron dynamics of the Dirac fermions in topological insulators and in engineering their surface state for fundamental studies and potential applications.Comment: 14 Pages, 4 Figure

    Unusual Fermi Surface Sheet-Dependent Band Splitting in Sr2RuO4 Revealed by High Resolution Angle-Resolved Photoemission

    Full text link
    High resolution angle-resolved photoemission measurements have been carried out on Sr2RuO4. We observe clearly two sets of Fermi surface sheets near the (\pi,0)-(0,\pi) line which are most likely attributed to the surface and bulk Fermi surface splitting of the \beta band. This is in strong contrast to the nearly null surface and bulk Fermi surface splitting of the \alpha band although both have identical orbital components. Extensive band structure calculations are performed by considering various scenarios, including structural distortion, spin-orbit coupling and surface ferromagnetism. However, none of them can explain such a qualitative difference of the surface and bulk Fermi surface splitting between the \alpha and \beta sheets. This unusual behavior points to an unknown order on the surface of Sr2RuO4 that remains to be uncovered. Its revelation will be important for studying and utilizing novel quantum phenomena associated with the surface of Sr2RuO4 as a result of its being a possible p-wave chiral superconductor and a topological superconductor.Comment: 13 pages, 4 figure

    Distinct Fermi Surface Topology and Nodeless Superconducting Gap in (Tl0.58Rb0.42)Fe1.72Se2 Superconductor

    Full text link
    High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the (Tl0.58_{0.58}Rb0.42_{0.42})Fe1.72_{1.72}Se2_2 superconductor with a Tc_c=32 K. The Fermi surface topology consists of two electron-like Fermi surface sheets around Γ\Gamma point which is distinct from that in all other iron-based compounds reported so far. The Fermi surface around the M point shows a nearly isotropic superconducting gap of \sim12 meV. The large Fermi surface near the Γ\Gamma point also shows a nearly isotropic superconducting gap of \sim15 meV while no superconducting gap opening is clearly observed for the inner tiny Fermi surface. Our observed new Fermi surface topology and its associated superconducting gap will provide key insights and constraints in understanding superconductivity mechanism in the iron-based superconductors.Comment: 4 pages, 4 figure
    corecore